Start Date
Immediate
Expiry Date
25 Oct, 25
Salary
0.0
Posted On
25 Jul, 25
Experience
0 year(s) or above
Remote Job
Yes
Telecommute
Yes
Sponsor Visa
No
Skills
Programming Languages, Mathematics, C++, Neural Networks, Computer Science, Computer Engineering, Hardware Architecture
Industry
Computer Software/Engineering
Cerebras Systems builds the world’s largest AI chip, 56 times larger than GPUs. Our novel wafer-scale architecture provides the AI compute power of dozens of GPUs on a single chip, with the programming simplicity of a single device. This approach allows Cerebras to deliver industry-leading training and inference speeds and empowers machine learning users to effortlessly run large-scale ML applications, without the hassle of managing hundreds of GPUs or TPUs.
Cerebras’ current customers include global corporations across multiple industries, national labs, and top-tier healthcare systems. In January, we announced a multi-year, multi-million-dollar partnership with Mayo Clinic, underscoring our commitment to transforming AI applications across various fields. In August, we launched Cerebras Inference, the fastest Generative AI inference solution in the world, over 10 times faster than GPU-based hyperscale cloud inference services.
SKILLS AND QUALIFICATIONS
PREFERRED SKILLS AND QUALIFICATIONS
ABOUT THE ROLE
As a Kernel Engineer on our team, you will develop high-performance software solutions at the intersection of hardware and software, developing high-performance software for cutting-edge AI and HPC workloads. Your focus will be on implementing, optimizing, and scaling deep learning operations to fully leverage our custom, massively parallel processor architecture.
You will be part of a world-class team responsible for the design, performance tuning, and validation of foundational ML and HPC kernels. This includes building a library of parallel and distributed algorithms that maximize compute utilization and push the boundaries of training efficiency for state-of-the-art AI models. Your work will be critical to unlocking the full potential of our hardware and accelerating the pace of AI innovation.
RESPONSIBILITIES